Like it or not, winter is officially here. For the next three months or so Midwesterners will endure cold temperatures and, of course, the dreaded “S” word—snow. But did you know that snow is favored in some areas more than others? These areas are called snow belts and lake-effect snow bands amplify these areas. Let’s dive in and take a look. The official definition of a snow belt is rather simple; it is any area where heavy snowfall is particularly common with the help of lake-effect snow. Also, wind direction helps position these snow belts in the Great Lakes region. As you can see in the image above, most of the snow belts are on the leeward side of the Great Lakes. Cold winds in the winter usually prevail from the northwest. This wind direction produces substantial lake-effect snowfall across the Great Lakes region. The wind direction influences the amount of time cold air is over the lakes, which aids lake-effect snow. Lake-effect snow results from cold air passing over relatively warm waters of lakes. This causes lake water to be evaporated into the air, thus warming it. This warmer, wetter air rises and cools as it moves away from the lake. Once cooled, this causes the moisture to be released in the forms of snow. The greater the temperature difference between the air and water, the greater the potential of a more intense lake-effect snow event. The Upper Peninsula Snow Belt experiences probably the vastest effect of lake-effect snow in terms of area, with the exception of the Lake Michigan snow belt. Stretching from the Porcupine Mountains (Western U.P.) to Canada, anywhere in this region can experience upwards of 250 inches (20.8 feet) of snowfall per year. For comparison, Duluth, Minnesota which is located on the southwestern tip of Lake Superior, only experiences 78 inches (6.5 feet) of snowfall per year. Another snow belt in the Great Lakes region that experiences dramatic snow fall is the Lake Ontario and Lake Erie snow belts. These two belts can clearly be seen from the first image above. These two regions see daily snowfall totals that are higher than anywhere in the United States. This is due to intense lake-effect snow bands blasting the region with whiteout conditions. The average snowfall for these regions is roughly around 116 inches (9.6 feet) of snowfall. Due to Lake Erie’s relatively shallow depth, this lake is the only lake that is capable of completely freezing over. If this happens, the moisture source for lake-effect snow bands is cut-off, thus ceasing lake-effect snow events. This is why early in the season lake-effect snow is favored for snow accumulation. The Lake Michigan and Lake Huron snow belts are similar in terms of intensity. The Lake Michigan side, however, can be rather unique. Under the right conditions, northerly winds can form a single band of lake-effect snow stretching along the Lake Michigan coast. This produces intense and localized snow fall. Lake Huron can experience this same intensity for the Bruce Peninsula and Georgian Bay regions. Lake-effect snow is almost a given during any winter precipitation event. It is only when small bays in this area freeze over that lake-effect snow is cut-off, other than that, localized, heavy snowfall blankets the region. Are you in a Great Lakes region snow belt? If so, make sure proper plans are in place in case heavy snowfall impacts your area. Even if you are not in a snow belt, the winter months in any area in the Great Lakes region has their fair share of heavy snowfall.
For more winter weather information, click here! ©2019 Weather Forecaster Alec Kownacki
0 Comments
Leave a Reply. |
Archives
December 2022
|