Global Weather & Climate Center
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science

Weather Research Topics:
​The Latest Meteorological Research from our Writers and Beyond!

The Importance of Research Field Campaigns in Understanding Sub-Daily Forecasting (Credit: NOAA National Severe Storms Laboratory)

5/31/2019

0 Comments

 
Picture

On May 28, tornadoes tore through Kansas & Missouri. NOAA NSSL researchers were flying in the area w/@NOAA_HurrHunter @NOAA_OMAO crew collecting data for the #TORUS19 project. The goal of this project is to improve forecasts & tools used by the @NWS.https://t.co/5ezQjgShJG pic.twitter.com/qdLrQqvtIC

— NOAA NSSL (@NOAANSSL) May 31, 2019

Full sounding. pic.twitter.com/xgyPMTiCnY

— Manda Chasteen (@theweathermanda) May 20, 2019
DISCUSSION: Field campaigns in the atmospheric sciences play a vital role in allowing forecasters and researchers to obtain further knowledge on the evolution of the state of the atmosphere. This is especially true in situations where high impact weather is expected to occur over densely populated areas. This year, The National Severe Storms Laboratory launched the Targeted Observations by Radars and Unmanned aerial surveillance of Supercells (TORUS) experiment designed to investigate the dynamics of ongoing severe thunderstorms and how their evolution may lead to the potential formation of tornadoes. The focus of the TORUS experiment is within the planetary boundary layer – the lowest layer in the atmosphere influenced by the frictional force of the wind, and how its constant changes could impact nowcasting and forecasting of ongoing severe weather threats. Much like the Mesoscale Convective Experiment (2013) and Plains Elevated Convection At Night (2015) experiment, an overarching goal of TORUS was to advance the current knowledgebase of supercells and how changes in their intensity as a function of the surrounding environment can help enhance or degrade a public forecast while also serving as extra information to ingest into weather models for enhanced predictability at relatively short time scales. The combination of ground-based equipment and techniques along with the use of NOAA’s Lockheed P-3 Orion “Hurricane Hunter” should return plenty of information.

Normally, the National Weather Service Weather Forecast Offices (NWS WFOs) launch radiosondes at 1200 and 0000 UTC (e.g., 8 AM/8 PM EDT) to sample the overall atmospheric profile and obtain valuable information for the prediction of severe storms. One particular case in where forecasters benefitted from the additional data supplied by TORUS was with the most recent high risk severe weather day on 20 May. The mobile soundings provide extra atmospheric data at unconventional times in the day that are the stepping stone to potential modifications for a forecast. For instance, a TORUS sounding taken near Vinson, OK at around 1930 UTC (2:30 PM CDT) showed a highly unstable environment and highly favorable for the development of significant supercells that could have led to long-track, violent tornadoes. Compared to a more traditional 1200 UTC sounding, that meant that over seven hours had elapsed which is ample timing for the environment to change considerably. Ultimately, this was not the case across much of central and southern Oklahoma on 20 May for which the reasoning is still up for much debate to this date, but it is information like these soundings that give forecasters a leg up on making the necessary quick decisions with a rapidly changing environment.
 
Even with the ability to interrogate the atmosphere with mobile soundings, it also elucidates more questions and unknowns for researchers to grasp onto moving forward. For example, why did the 20 May severe weather outbreak not materialize as expected despite environmental parameters suggesting an outbreak akin to the 27 April 2011 tornado outbreak over the Deep South states of Mississippi and Alabama? Or, how is it that “lower” severe weather risks issued by the Storm Prediction Center lead to more active days? These are good questions to ponder about and while mobile soundings may not provide the entire story to the eventual growth and while the world of research to operations (commonly known as R2O) has much to learn about sub-daily (and even sub-hourly) forecasts, field campaigns like TORUS provide the necessary benefits for forecasters and researchers alike to gain a richer understanding of quickly evolving atmospheric conditions.
 
More about the TORUS experiment can be found here.
 
To learn more about other weather research topics and issues, be sure to click here!

Sounding credit: Manda Chasteen
 
© 2019 Meteorologist Brian Matilla
0 Comments



Leave a Reply.

    Archives

    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    August 2019
    July 2019
    May 2019
    February 2019
    January 2019
    November 2018
    September 2018
    July 2018
    May 2018
    March 2018
    February 2018
    January 2018
    December 2017
    October 2017
    February 2017
    December 2016
    September 2016


    RSS Feed

© 2022, Global Weather and Climate Center
ALL RIGHTS RESERVED
​Webmaster - Stephen Piechowski
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science