Global Weather & Climate Center
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science

Weather Education

What is the Difference Between Tropical Cyclones and Extratropical Cyclones?

7/31/2019

0 Comments

 
Many of us are aware of what a tropical cyclone (hurricane) is, but what about an extratropical one? Extratropical cyclones (aka mid-latitude cyclones) are those that we witness all year round here in the continental U.S. They are simply low pressure systems. Low pressure systems, unlike high pressure systems, rotate counterclockwise. This helps to create convergence since the air is converging towards the center and will want to rise. Thus, clouds and precipitation usually form, if other conditions are also right. These extratropical systems are frequently the cause of our precipitation, especially the stronger and heavier storms. This is because of the greater instability that is present, meaning the atmosphere has a lot of energy to work with. Typically, the stronger the system, the stronger the storm . For instance, many tornadic storms are the result of strong extratropical systems. 
 
An extratropical cyclonegets its energy from the horizontal temperature contrasts that exist in the atmosphere. The temperature contrasts help to provide the forcing and instability needed for storm development in the form of frontal systems. These include cold fronts, warm fronts, and occluded fronts.On the other hand, tropical cyclonesare barotropic in nature, meaning there is constant pressure and density. This type of atmosphere results in no fronts and little temperature differences across the storm at the surface. Tropical cyclone winds are derived from the release of energy in the form of latent heat. Latent heat is energy which is transferred from one substance to another, such as evaporation and condensation processes. In the case of a tropical cyclone, it is due to cloud/rain formation from the warm moist air of the tropics. Furthermore, Tropical cyclones have their strongest winds near the surface of the Earth. In contrast, extratropical cyclones have their strongest winds near the tropopause, which is about 8 miles above the surface. These differences are due to the tropical cyclone being "warm-core" in the troposphere, whereas extra-tropical cyclones are "warm-core" in the stratosphere and "cold-core" in the troposphere. A “warm-core” system refers to a system which is warmer than its surroundings. A schematic view which shows the difference between “warm-core” cyclones (tropical) and “cold-core” cyclones (extratropical) are shown below. 
Picture
Courtesy: NOAA
As far as the similarities between the two, tropical cyclones and extratropical cyclones are both symmetrical. They also have surface areas of low pressure with winds that rotate counter clockwise. Furthermore, both produce very heavy precipitation and often times results in flooding. Both tropical cyclones and mid-latitude cyclones can last for several days, and sometimes as long as a week or more.
Credit: NOAA
​
For more weather education, click here.


@2019 Meteorologist Corey Clay



0 Comments



Leave a Reply.

    Archives

    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016


    RSS Feed

© 2020, Global Weather and Climate Center
ALL RIGHTS RESERVED
​Webmaster - Stephen Piechowski
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science