Global Weather & Climate Center
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science

Weather Education

How Precipitation Forms

9/30/2019

0 Comments

 
Picture
For precipitation to form, we need four key ‘ingredients.’ First, we need a lifting mechanism.  This will create saturation. There are three commonly known ways to create this uplift. 
 
The most common one is a front, also known as a cyclone. . These are large scale weather patterns that can last from hours to even  days. An everyday example of this type of weather pattern is when a warm front moves into a surface cold front. The warm air will try and stay on top creating a ‘lift’ for saturation to form. The next common way is through convection. This happens in deep cumulonimbus clouds and usually only lasts for an hour or two. These will form mostly in the summer, and are known as thunderstorms (like the ones we see in the summertime in Albany, New York.) Lastly, orographic lifting is another way to get lift and saturation. This happens when there is a mountain range, on the windward side of the mountain. The air will rise on the windward side, and, while it rises, it results in adiabatic cooling and condensation. Which is a “condition is which heat does not enter or leave the system.”
 
Now after we have the lifting part, we need the next few steps: water vapor to condense and grow. We’ll want the air to reach 100% relative humidity, and from here, it depends if it is a clean water particle, or not. If it is a clean water particle, then it will have to find some cloud condensation nuclei to form onto, and then it can grow. Cloud condensation nuclei (or CCN for short) are particles such as sea salt, dirt, aerosols, or minerals and they serve as a base for water droplets to form onto. A clean water droplet will have a hard time forming to another water droplet, unless it has a CCN, which will allow for it to initiate condensation. (If you have a “dirty” water particle, that just means it’s already mixed with a CCN and doesn’t need to find one to form!) Usually, if it is “dirty” air, it will have lots of small cloud droplets (water droplets) within. But if it is “clean” air, then it will have a few large cloud droplets within it. For the droplet to fall, it needs to grow, as they fall dependent on their size and weight. A droplet will collide and coalescence (the joining or merging of two elements) with other droplets as it is falling through the sky growing in size during its fall. The larger the droplet gets, the faster the fall, and the more it will collide with other droplets. This will create a supersaturated cloud and once it has a lifting mechanism, rain will fall.
 
For more weather education topics click here! 

© 2019 Weather Forecaster Allison Finch
 

0 Comments



Leave a Reply.

    Archives

    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016


    RSS Feed

© 2020, Global Weather and Climate Center
ALL RIGHTS RESERVED
​Webmaster - Stephen Piechowski
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science