Global Weather & Climate Center
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science

Severe Weather Topics

8 Inch Hail Falling From the Sky? How Large Hail is Formed (Credit: NWS Aberdeen and NSSL)

7/31/2019

0 Comments

 
Picture

On July 23, 2010, a hailstone that shattered records fell in Vivian, South Dakota. This hailstone weighed roughly 1.9375 lbs and was 8 inches in diameter. A typical hailstone is nowhere near this large, so how did a phenomena like this occur?

Hail is formed as water droplets are lifted higher into the thunderstorm into very cold air, allowing these droplets to freeze. The frozen droplets collide and interact with supercooled water droplets that freeze on contact, allowing for the hailstone to grow. The hailstone continues to grow as it continues to collide with supercooled water droplets within the cloud until it becomes too large for the thunderstorm's updraft to support. At this point, the hail will fall through the cloud, often colliding with other hailstones on its way down, before falling to the ground. 

But what is an updraft, and how does it relate to larger hail? An updraft is upward moving air that helps with the formation and sustaining of thunderstorms. A thunderstorm’s updraft will lift warm, moist air into the storm to fuel and sustain the storm. It also carries water droplets higher into the storm. Stronger updrafts would be able to lift water droplets higher and into colder parts of the storm than weaker updrafts. Stronger updrafts would also be able to keep larger hailstones aloft for longer. Because of these factors, stronger updrafts would lead to larger hailstones. And if you have a strong enough updraft, hailstones such as the record breaking one in Vivian, SD can form. 

To learn more about severe weather topics from around the globe, click here!
​

©2019 Meteorologist Stephanie Edwards

0 Comments



Leave a Reply.

    Archives

    August 2022
    November 2021
    April 2020
    March 2020
    February 2020
    December 2019
    November 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    November 2016
    September 2016
    August 2016
    July 2016


    RSS Feed

© 2022, Global Weather and Climate Center
ALL RIGHTS RESERVED
​Webmaster - Stephen Piechowski
  • Home
  • About
    • GWCC Is
    • Where in the World is GWCC?
    • Contact Us
  • Global Regions
    • Africa
    • Atlantic Ocean and Caribbean Sea
    • Central and Eastern Pacific Ocean
    • Central and South America
    • Europe
    • North America
    • Indian Ocean and Asia
    • Polar Regions
    • South Pacific Ocean and Australia
    • Western Pacific Ocean
  • Weather
    • Applied Meteorology >
      • Air Quality
      • Aviation
      • Droughts
      • Fire Weather
      • Flooding
      • Geosciences
      • Global Environmental Topics
      • Weather Observations
    • Weather Education
    • Weather History
    • Weather Research
    • Weather Safety and Preparedness
    • Severe Weather
    • Social Sciences
    • Space Weather
    • Tropical Cyclones
    • Weather and Health
    • Winter Weather
  • Climate
  • GWCC Global Imagery Archive
  • GWCC Window to the World
    • GOES-16 Live Satellite Imagery Portal
    • GOES-16 ABI Channel Description and Examples
    • GOES-16 ABI Satellite Products
    • GOES-17 Live Satellite Imagery Portal
    • Himawari-8 Live Satellite Imagery Portal
    • Meteosat-11 Live Satellite Imagery Portal
  • Kids Corner
    • Kindergarten to 5th Grade
    • 6th to 12th grade
    • Fun Facts & Weather Trivia
    • GWCC Weather Radar Education
    • GWCC Wheel of Science