There is no question that Summer-time convection can be very hard to predict and anticipate over a shorter-term forecast time-frame. This is perfectly captured by the great regional convective example which unfolded across parts of Colorado, Nebraska, Kansas, and a few other nearby states. During Tuesday afternoon, there was a complex group of nearby convective outflow boundaries which interacted with one another. As these convective outflow boundaries moved towards one another along with a potent supercell thunderstorm approaching the collection the group of nearby outflow boundaries, quite an interesting event transpired. However, that still does not tell the entire story.
In addition to a supercell thunderstorm approaching from the west, there was also a tightly-knitted cluster of weaker thunderstorms approaching the from the south. Moreover, the truly interesting part about the entire situation was the fact that as the supercell thunderstorm collided with the outflow boundaries and the northward-moving cluster of weaker thunderstorms, this allowed the supercell thunderstorm to be absorbed by the larger cluster of storms moving in from the south. During this process, the ultimate result was that the collision of these respective components led to a broadening of the rotation within the larger area of convection. This larger area of rotation as shown in the animated radar imagery gif attached above is more commonly and scientifically referred to as a mesoscale convective system. The other interesting part about this case was that as the respective components collided and merged, there was a substantial concentrated increase in the density of corresponding regional lightning strikes. This is not too uncommon though by the same token since whenever you have a collision of various regional convective storm(s) and/or cluster(s) thereof, there is quite often a corresponding increase in regional lightning strike density because of new storm initiation being triggered. Thus, as new storms fire along the colliding convective outflow boundaries, very interesting convective events can unfold as a result of older convection interacting along with newer convection firing up. To learn more about other interesting events occurring across North America, be sure to click here! ©2018 Meteorologist Jordan Rabinowitz
0 Comments
Leave a Reply. |
Archives
March 2022
|